170
Views
2
CrossRef citations to date
0
Altmetric
Technical Papers

Concentrated Nonequilibrium HD for the Cross Calibration of Hydrogen Isotopologue Analytics

ORCID Icon, , &
Pages 284-290 | Received 17 May 2019, Accepted 10 Dec 2019, Published online: 13 Feb 2020
 

Abstract

For the fuel cycles of fusion power plants, highly specialized in-line analytic systems are crucial for efficient process control, monitoring, and accountancy. One of these systems under development is infrared (IR) absorption spectroscopy of liquid hydrogen isotopologue mixtures that can be used for in-line process control and monitoring of cryogenic distillation. The main challenge of this method is the complex calibration procedure since the integral IR absorption strength is nonlinearly correlated with the isotopologue composition. Typical calibration procedures make use of well-known samples produced by mixing atomic pure samples and referenced by p-V-T-measurement. The samples are catalyzed to produce samples containing heteronuclear molecules. By this procedure, one cannot exceed the chemical equilibrium of high temperatures (mass action coefficient Kc<4). Therefore, it is not possible to produce samples with an HD, HT, or DT concentration above 50% by catalysis or natural equilibration. However, in isotope or isotopologue separation, such as in cryogenic distillation, this equilibrium will be regularly exceeded. In the case of IR absorption spectroscopy on liquid hydrogen isotopologues, additional care needs to be taken for calibration since the calibration functions are highly nonlinear. We tested our calibration in the high-purity HD regime (Kc>4) by producing a sample via cryogenic distillation and performing a cross calibration for three systems: Quadrupole mass spectrometry, Raman spectroscopy, and infrared spectroscopy. Therefore, we can also demonstrate that additional calibration points are indispensable in order to improve the systematic uncertainties below the 5% level, and a simple extrapolation from a calibration of Kc < 4 to Kc > 4 will result in a trueness and accuracy exceeding this 5% level.

Notes

a The amount of substance is limited by the so-called holdup of the column as the lower limit. The holdup is the minimal amount of substance that is needed to fill the condenser, packing, and reboiler. The additional amount of substance to the holdup depends on the input mixture, intended output mixture, output amount of substance, and separation efficiency.

b Usually, the complete amount of substance in the reboiler is extracted.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 596.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.