0
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Fabrication of NBI Ion Source Back Plate and its High Heat Flux Experiment

ORCID Icon, , , , , , , , , , , , & show all
Received 17 Dec 2023, Accepted 03 Jun 2024, Published online: 16 Jul 2024
 

Abstract

The back plate is an important component of the ion source because of its multiple roles including heat load removal during beam operation. The main components of the back plate are (1) a Type 304L stainless steel (SS304L) magnet positioning plate that holds samarium cobalt permanent magnets required for the confinement of ion source plasma, (2) an oxygen-free electronic copper cooling plate with 35 inner and 8 outer cooling channel grooves (each of which is 4 × 1.8 mm2) that is vacuum brazed with a SS304L magnet positioning plate, and (3) a SS304L magnet cover plate. In this paper, the back plate is successfully fabricated, and a high heat flux experiment is done at the High Heat Flux Test Facility Center with an electron beam power of 200 kW for 458 s. The uniform incident heat flux is 2.5 MW/m2. Demineralized water at 34°C is supplied at the rate of 1 kg/s to the cooling plate at inlet pressure of 8.2 bars to remove the high heat load. The surface temperature of the copper plate is measured by an infrared camera, and three temperature regions are observed. The measured average surface temperature of the cooling plate is ~152°C. The bulk water temperature rise ΔTw is ~39.42°C. The estimated absorbed heat flux is ~2.04 MW/m2, and the heat absorption coefficient is 81.6%. The measured leak rate after the heat flux test is 1.6 × 10−8 mbars∙L/s. These High Heat Flux Test experimental results will be useful to study the thermomechanical performance of the back plate and to understand the effect of increasing the beam pulse length.

Acknowledgments

The authors would like to acknowledge Vishnu Prajapati for the design of 3D CAD models of the back plate. The authors also acknowledge S. Rambabu, colleagues of the PNBI group, and the Institute for Plasma Research workshop for the various help received. The authors are thankful to Tejendra Patel for providing CFD analysis data. The authors are also thankful to Mainak Bandyopadhyay for his comments, which were helpful to improve the quality of the manuscript. Finally, the authors are very much thankful to the three reviewers for their valuable comments to improve the quality of the paper.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 596.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.