191
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Low-Temperature Synthesis of Carbon Nanotubes via Floating Catalyst Chemical Vapor Deposition Method

, , &
Pages 522-531 | Published online: 31 May 2011
 

Abstract

Carbon nanotubes (CNTs) are widely synthesized at high temperatures via floating catalyst chemical vapor deposition (FC-CVD) method. It is important to reduce the synthesis temperature of CNTs to allow better control of the reactor's conditions and to eliminate the formation of carbon by-products. The main objective of this work was to synthesize carbon nanotubes at low temperatures. Temperature in-situ monitoring unit was used to monitor the temperature profile in the reactor. Benzene and ferrocene were used as the carbon source and catalyst precursor, respectively. The minimum pyrolysis temperature of benzene was successfully estimated, and the investigation of temperature profile in the reactor was achieved. In this work, multi-walled CNTs were successfully synthesized for synthesis temperatures between 540°C and 600°C. Based on the analyses, the qualities of CNTs produced were profoundly improved with the increase of synthesis temperatures.

Acknowledgments

This work was supported by Research University Grant, Universiti Putra Malaysia (Project No.RU01154). The authors wish to thank The Department of Chemical and Environmental Engineering (UPM) and The Microscope Unit, IBS (UPM).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 906.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.