192
Views
1
CrossRef citations to date
0
Altmetric
Articles

Porous carbon/Co3S4 hollow polyhedron as sulfur carrier to enhance cyclic stability for lithium-sulfur batteries

ORCID Icon, , &
Pages 392-403 | Received 04 May 2021, Accepted 16 Jun 2021, Published online: 28 Jun 2021
 

Abstract

The lithium-ion battery is subject to the limited theoretical specific capacity of electrode materials, which is difficult to achieve capacity breakthrough. However, the theoretical specific capacity of the sulfur cathode for lithium-sulfur battery is 1675 mAh g−1 and the energy density is 2600 Wh kg−1. However, lithium-sulfur batteries suffer from three problems: “shuttle effect,” sulfur electron/ion insulation, and volume expansion. Moreover, the carbon materials or metal sulfides alone cannot achieve the dual effects of excellent conductivity and chemisorption as sulfur carriers. Therefore, 350 nm and 1 μm of polyhedron with mesoporous carbon and Co3S4 were prepared (denoted as C/Co3S4@S (S) for the small one and C/Co3S4@S (L) for the large one, respectively) using PVP modified self-assembled Co-MOFs as a sacrificial template. The C/Co3S4 (S) carrier provided a sulfur-filled channel, and shortened the electron transport path with excellent conductivity. Simultaneously, the polar Co3S4 chemisorption of polysulfide and hollow structure provided a sufficient storage for sulfur. As the cathode of lithium-sulfur battery, C/Co3S4@S (S) exhibited an initial capacity of 1153 mAh g−1 at 0.5 C, and the capacity decay rate per cycle is only 0.057% during 500 cycles at 1 C, compared to 1 μm C/Co3S4@S (L) efficiently improved the cycle stability.

Disclosure statement

The authors declare no competing financial interest.

Additional information

Funding

This project was supported by the National Natural Science Foundation of China (Grant Nos. 51578448, 51308447), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2017ZDJC-18) and Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Human Resources and Social Security of the People's Republic of China (Shan Ren She Han [2016]789).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 906.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.