115
Views
1
CrossRef citations to date
0
Altmetric
Articles

Tuning the electronic properties of Stone-Wales defected graphene using uniaxial longitudinal and horizontal strain: A first-principles study

ORCID Icon &
Pages 428-437 | Received 19 Apr 2021, Accepted 24 Jun 2021, Published online: 12 Jul 2021
 

Abstract

We investigated the influence of horizontal and longitudinal strain on the electronic proprieties of Stone-Wales defected honeycomb graphene structure using the density functional theory. Tensile and compressive uniaxial strains were independently applied on the armchair (horizontal) and the zigzag (longitudinal) directions of a defected honeycomb graphene monolayer. We found the responses of the band gap are dependent on the applied strain direction. Likewise, the induced band gap openings show evident correlations between Stone-Wales defect orientations and the applied strain directions. Our results show that by choosing the strain values and directions the band gap values can be precisely achieved. Additionally, the effects of the applied strain were calculated and analyzed for the Fermi level, work function and the charge distributions. For both the defect-free and the defected samples, Fermi level shifts up in response to the compressive strain while it shifts down in response to the tensile strain. Our study shows the electronic properties are significantly affected by the alignment between the Stone-Wales C-C middle bond orientation and the applied stain direction. Finally, we hope providing a precise tuning for the electronic properties of defected graphene will allow for future nanodevice applications.

Acknowledgments

The Authors acknowledge the Deanship of Scientific Research at King Faisal University for their support under Grant (#180111).

Declaration of competing interest

This work is original and not submitted elsewhere. And the Authors declare no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 906.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.