75
Views
2
CrossRef citations to date
0
Altmetric
Original

Modeling Environment for Numerical Simulation of Applied Electric Fields on Biological Cells

, &
Pages 239-250 | Published online: 07 Jul 2009
 

Abstract

The application of electric pulses in cells increases membrane permeability. This phenomenon is called electroporation. Current electroporation models do not explain all experimental findings: part of this problem is due to the limitations of numerical methods. The Equivalent Circuit Method (ECM) was developed in an attempt to solve electromagnetic problems in inhomogeneous and anisotropic media. ECM is based on modeling of the electrical transport properties of the medium by lumped circuit elements as capacitance, conductance, and current sources, representing the displacement, drift, and diffusion current, respectively. The purpose of the present study was to implement a 2-D cell Model Development Environment (MDE) of ionic transport process, local anisotropy around cell membranes, biological interfaces, and the dispersive behaviour of tissues. We present simulations of a single cell, skeletal muscle, and polygonal cell arrangement. Simulation of polygonal form indicates that the potential distribution depends on the geometrical form of cell. The results demonstrate the importance of the potential distributions in biological cells to provide strong evidences for the understanding of electroporation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,832.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.