164
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A novel ISM band reflector type applicator design for microwave ablation systems

ORCID Icon, , &
Pages 286-300 | Received 14 Nov 2020, Accepted 31 Jan 2021, Published online: 14 Feb 2021
 

ABSTRACT

In this paper, a radiation performance improved novel applicator is proposed which is called as reflector type microwave applicator as a part of microwave ablation (MWA) system operating at 2.45 GHz with experimentally measured bandwidth of 300 MHz in Industrial Scientific Medical (ISM) band for the local extermination of tumor with highly localized microwave power. The design principle of MW applicator is based on the structural formation of coaxial transmission line fed dielectric loaded with the metallic circular reflector for the near field energy concentration inside the tumorous tissue. To generate localized electromagnetic waves, a novel reflector type microwave applicator is designed by placing an aluminum disk near the 10 mm dielectric radiator section. The proposed applicator design has been numerically studied with finite integration technique (FIT) in CST Microwave Studio to develop the near field radiation pattern affecting the ablation level of tumorous tissue. In the light of performed numerical calculations, maximum SAR (Specific Absorption Rate) value on 1.76 g tumorous sample can be achieved to 208 W/kg under 15 W microwave power accepted by proposed probe. The experimental results confirm that proposed applicator can be utilized highly localized MWA applicator for cancer treatment hence the surface temperature of cylindrical shaped tumor sample which has the dimensions of 14.4 mm diameter and 8 mm height reaches from 25 to 68.3°C in 10 min.

Acknowledgements

This work has been supported by the Project 117E811 of TUBITAK (Scientific and Technological Research Council of Turkey).

Additional information

Funding

This work was supported by the Türkiye Bilimsel ve Teknolojik Araştirma Kurumu [117E811].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,832.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.