0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Generative adversarial network for Multimodal Contrastive Domain Sharing based on efficient invariant feature-centric growth analysis improved brain tumor classification

&
Received 05 Feb 2024, Accepted 27 Jun 2024, Published online: 30 Jul 2024
 

ABSTRACT

Efficient and accurate classification of brain tumor categories remains a critical challenge in medical imaging. While existing techniques have made strides, their reliance on generic features often leads to suboptimal results. To overcome these issues, Multimodal Contrastive Domain Sharing Generative Adversarial Network for Improved Brain Tumor Classification Based on Efficient Invariant Feature Centric Growth Analysis (MCDS-GNN-IBTC-CGA) is proposed in this manuscript.Here, the input imagesare amassed from brain tumor dataset. Then the input images are preprocesssed using Range – Doppler Matched Filter (RDMF) for improving the quality of the image. Then Ternary Pattern and Discrete Wavelet Transforms (TPDWT) is employed for feature extraction and focusing on white, gray mass, edge correlation, and depth features. The proposed method leverages Multimodal Contrastive Domain Sharing Generative Adversarial Network (MCDS-GNN) to categorize brain tumor images into Glioma, Meningioma, and Pituitary tumors. Finally, Coati Optimization Algorithm (COA) optimizes MCDS-GNN’s weight parameters. The proposed MCDS-GNN-IBTC-CGA is empirically evaluated utilizing accuracy, specificity, sensitivity, Precision, F1-score,Mean Square Error (MSE). Here, MCDS-GNN-IBTC-CGA attains 12.75%, 11.39%, 13.35%, 11.42% and 12.98% greater accuracy comparing to the existingstate-of-the-arts techniques, likeMRI brain tumor categorization utilizing parallel deep convolutional neural networks (PDCNN-BTC), attention-guided convolutional neural network for the categorization of braintumor (AGCNN-BTC), intelligent driven deep residual learning method for the categorization of braintumor (DCRN-BTC),fully convolutional neural networks method for the classification of braintumor (FCNN-BTC), Convolutional Neural Network and Multi-Layer Perceptron based brain tumor classification (CNN-MLP-BTC) respectively.

Plain-language summary

The proposed MCDS-GNN-IBTC-CGA method starts by cleaning brain tumor images with RDMF and extracting features using TPDWT, focusing on color and texture. Subsequently, the MCDS-GNN artificial intelligence system categorizes tumors into types like Glioma and Meningioma. To enhance accuracy, COA fine-tunes the MCDS-GNN parameters. Ultimately, this approach aids in more effective diagnosis and treatment of brain tumors.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported thereis no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,832.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.