657
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Modeling and computing parameters of three-dimensional Voronoi models in nonlinear finite element simulation of closed-cell metallic foams

, , , , , & show all
Pages 1265-1275 | Received 10 Dec 2015, Accepted 11 May 2016, Published online: 07 Oct 2016
 

ABSTRACT

Modeling and computing parameters in nonlinear finite element simulations significantly affect simulation accuracy and efficiency even when it is carried out using commercial software, such as ABAQUS, ANSYS, etc. Yet comprehensive effects of these parameters on simulation results have seldom been reported. In this article, we explore the effects of several important parameters, such as mass scaling type and value, element type and size, and loading velocity, on the accuracy and efficiency of nonlinear finite element simulation of metallic foams based on three-dimensional Voronoi mesostructures. Analysis indicated that these parameters did affect simulation accuracy and efficiency, and three optimized nondimensional parameters were recommended. Based on the verified model and optimized parameters, effects of cell-wall thickness distribution on the uniaxial properties of metallic foams were also investigated. Simulation results showed that the different distribution of cell-wall thickness in modeling may induce varied elastic moduli and yield stress of metal foams. Our analysis showed that modeling and computing parameters must be paid attention to in the nonlinear FE simulation, and that the recommended parameters constitute a good reference for numerical simulation of metallic foams in predicting mechanical behaviors.

Additional information

Funding

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11472109 and 11502055) and by the Natural Science Foundation of Guangdong Province (Grant Nos. 2015A030311046 and 2015B010131009).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 423.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.