562
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Free vibration and flexural response of functionally graded plates resting on Winkler–Pasternak elastic foundations using nonpolynomial higher-order shear and normal deformation theory

, &
Pages 523-538 | Received 18 Aug 2016, Accepted 21 Dec 2016, Published online: 14 Apr 2017
 

ABSTRACT

In the present work, the flexural and vibration response of a functionally graded plate resting on Pasternak elastic foundation is analyzed using a recently developed nonpolynomial higher-order shear and normal deformation theory by the authors. The novelty of this theory is that it contains only four unknowns and also accommodates the thickness stretching effect. Two kinds of micromechanics models, namely, the Voigt and Mori–Tanaka models, are considered. Material properties of the functionally graded plates are assumed to vary continuously in the thickness direction according to either a simple power law or an exponential law. Finite element formulation is done using C° continuous Lagrangian quadrilateral nine-noded elements with eight degrees of freedom per node. The equations of motion are derived using a variational approach. Convergence and comparison studies are carried out to establish the authenticity and reliability of the solutions. The effect of various boundary conditions, geometric conditions, micromechanics models, and foundation parameters on the flexural and vibration response of the functionally graded plate are investigated.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 423.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.