227
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Vibration analysis of parabolic shear-deformable piezoelectrically actuated nanoscale beams incorporating thermal effects

ORCID Icon &
Pages 917-929 | Received 15 Feb 2016, Accepted 25 Mar 2017, Published online: 07 Jul 2017
 

ABSTRACT

Thermoelectric-mechanical vibration behavior of functionally graded piezoelectric (FGP) nanobeams is first investigated in this article, based on the nonlocal theory and third-order parabolic beam theory by presenting a Navier-type solution. Electro-thermo-mechanical properties of a nanobeam are supposed to change continuously throughout the thickness based on the power-law model. To capture the small-size effects, Eringen's nonlocal elasticity theory is adopted. Using Hamilton's principle, the nonlocal governing equations for the third-order, shear deformable, piezoelectric, FG nanobeams are obtained and they are solved applying an analytical solution. By presenting some numerical results, it is demonstrated that the suggested model presents accurate frequency results of FGP nanobeams. The influences of several parameters, including external electric voltage, power-law exponent, nonlocal parameter, and mode number on the natural frequencies of the size-dependent FGP nanobeams are discussed in detail. The results should be relevant to the design and application of the piezoelectric nanodevices.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 423.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.