254
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Thickness effect study on the crushing characteristics of aluminum and composite tubes: Numerical analysis and multi-objective optimization

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2585-2594 | Received 23 Dec 2019, Accepted 23 Mar 2020, Published online: 09 Apr 2020
 

Abstract

Since lightweight and energy-absorbing materials have an effective role in occupant safety during accidents, the use of aluminum or composite tubes and their optimum designs are of great importance in crashworthiness. In this study, numerical simulation of crushing and multi-objective optimization of aluminum and composite cylinders are performed to evaluate the effects of tube thickness on the objective functions (the specific energy absorption and the peak force). Besides, the effects of annealing and tempering of ductile aluminum alloys (Al 6061) are investigated. The results show that annealing of ductile aluminum alloys yields a significant reduction in objective functions. With the same thickness of the aluminum and composite shell, the composite tube exhibits proper results in terms of both peak load and energy absorption. Finally, it seems that in the design of crash boxes, a thicker composite tube leads to more appropriate results than aluminum shell.

Disclosure statement

The authors declare that they have no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 423.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.