275
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Uncertainty propagation of frequency response of viscoelastic damping structures using a modified high-dimensional adaptive sparse grid collocation method

ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 506-524 | Received 21 May 2020, Accepted 31 May 2020, Published online: 01 Jul 2020
 

Abstract

Uncertainty propagation (UP) of the frequency response is essential for the robust design of viscoelastic damping structures. One challenge in solving this problem is enormous computation cost from the UP analysis. This paper aims to develop a novel computational effective method based on the combination of the adaptive sparse grid collocation (ASGC) method and the high dimensional model representation (HDMR) technique to evaluate the variability of the frequency response of viscoelastic damping structures. First, a well-validated layer-wise finite element method is employed to model the viscoelastic damping structures. The direct frequency response (DFR) method is utilized to calculate the response. Then, a modified adaptive strategy using expectation increments as the sampling indicator is proposed for cost-effective sparse grid construction. Lastly, high dimensional model representation (HDMR) technique is introduced to address the difficulty in moderate and high random dimensional situations. Two numerical examples are provided to assess the performances of the proposed method. Variations in constitutive parameters of viscoelastic material and thicknesses of the viscoelastic layer are considered. Numerical results show that, compared to the original high-dimensional ASGC method and Monte Carlo Simulation (MCS), the proposed method accurately predicts the variability of frequency responses and significantly improves the computational efficiency.

Disclosure statement

The authors hereby acknowledge that there is no conflict of interest in this article.

Additional information

Funding

The authors would like to acknowledge the financial support by China Science Challenge project (TZ2018007), China NSAF project (Grant No. U1530139) and Natural Science Basic Research Plan in Shaanxi Province of China (2020JQ-124).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 423.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.