394
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Forced vibration analysis of composite-geometrically exact elliptical cone helices via mixed FEM

, , , &
Pages 1456-1474 | Received 04 Jun 2020, Accepted 11 Sep 2020, Published online: 23 Sep 2020
 

Abstract

In this pioneering study, the cross-sectional warping included transient response and normal/shear stress components of composite elliptical and elliptical cone helices over exact axis geometry are investigated using a mixed FEM. The transient analysis is performed using the Newmark time integration algorithm with or without the amplitude decay factor. The constitutive equations of composite curved rods are derived from three-dimensional elasticity theory. A displacement-type finite element formulation computing the warping-included torsional rigidity is incorporated with the mixed finite element formulation. The curvatures and displacement-type finite elements are used to estimate the normal and shear stress distributions on the respective cross-sections. The maximum normal/shear stresses of a composite straight beam are compared with the literature. An excellent agreement is obtained for the results of an exact elliptical cone helix under dynamic loads compared to the results of 3D solid finite elements. During the implementation of the time integration scheme, the first and second time derivatives of forces and moments are preserved, and their time histories are discussed. Finally, the influences of helix geometry, lamination, and the ratios of material constants on the transient response besides the stresses are investigated. All the numerical examples in this paper are original for the literature.

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Funding

This research is supported by the Research Foundation of ITU (Project no: MGA-2017-4739). This support is gratefully acknowledged by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 423.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.