237
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Finite element solution of vibrations and buckling of laminated thin plates in hygro-thermal environment based on strain gradient theory

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 4383-4396 | Received 10 May 2022, Accepted 20 Jun 2022, Published online: 27 Jul 2022
 

Abstract

The paper aims to develop a finite element methodology to deal with vibrations and buckling of laminated thin plates subjected to thermal and hygroscopic effects, once a second-order strain gradient theory is included to overcome the limitations of conventional elasticity and to capture nonlocal phenomena. The numerical scheme takes advantage of Hermite approximation for both membrane and bending primary variables, since the strain gradient introduces higher-order derivatives of the nodal displacements. Its versatility is proven by dealing with general lamination schemes and arbitrary boundary conditions. The analyzed configurations cannot be solved analytically.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 423.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.