308
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Effects of Bacterial Toxins on Endothelial Tight Junction In Vitro: A Mechanism-Based Investigation

, &
Pages 331-347 | Received 05 Sep 2006, Accepted 17 Oct 2006, Published online: 09 Oct 2008
 

ABSTRACT

Lipopolysaccharide (LPS) and lipoteichoic acid (LTA), principal cell wall components of Gram-negative and Gram-positive bacteria, respectively, play a central role in altering the blood-brain barrier and facilitate bacterial infection of the host brain. Despite the significance of bacterial toxins in disease pathogenesis, mechanisms by which toxins impair the barrier are not yet known. This study, using an in vitro cell culture model, showed that LPS and LTA interacted with the endothelial cells and disrupted the tight junction between the cells that increased the barrier's permeability. Both toxins increased inducible nitric oxide synthase (iNOS) mRNA that is indicative of an increase in intracellular NO release, disrupted architecture of the tight junction proteins, suppressed zonula occludens-1 (ZO-1) and occludin (OCL) and junctional adhesive molecules (JAM) mRNA levels, and increased tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL-1β) mRNA levels. Anti-CD14 antibodies blocked the increase in TNFα and IL-1β mRNA levels but did not affect either changes in the tight junction or iNOS, ZO-1, OCL, and JAM mRNA levels in endothelial cells and astrocytes. Although both toxins did not cross the endothelial barrier, the abluminal neurons exhibited high inflammatory activity characterized by a sequential increase in TNFα, IL-1β, external receptor kinase (ERK), and RelA-p50 that induced inflammation, followed by an increase in anti-inflammatory/apoptotic factors including IL-10 and cysteine-aspartic acid protease-8 (CASPASE-8), which resolve inflammation and induce apoptosis. Anti-CD14 antibodies in luminal buffer blocked the pro- and anti-inflammatory effects of the toxins in neurons. Thus, the CD14-TLR cascade that participates in the inflammatory effects of toxins may not participate in the toxin-induced barrier disruption in vitro. Since the toxins did not cross the endothelial barrier, induction of inflammation in neurons was due to a release of proinflammatory cytokines in the abluminal fluid.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.