330
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Neurobehavioral assessment following e-cigarette refill liquid exposure in adult rats

, , , &
Pages 425-432 | Received 04 Jan 2016, Accepted 20 May 2016, Published online: 12 Jul 2016
 

Abstract

The present study was conducted to assess the toxic effect of e-cigarette refill liquid on cognitive and motor functions in adult rats. Animals were administered 28 μl/kg of body weight of e-liquid with/without a dose of 0.5 mg of nicotine/kg of body weight, using the intraperitoneally route for a period of 4 weeks. They were then evaluated by novel object recognition test (NORT) and spontaneous alternation T-maze test for cognitive functions. Results indicated that e-liquid without nicotine induced, in the NORT, a decrease in time exploring the novel object during the test session and lower discrimination and recognition indexes compared to control and e-liquid with nicotine treated rats. Furthermore, short-term spatial memory was affected after e-liquid treatment in the spontaneous alternation T-maze test, identifying recognition memory impairments. However, none of the treatments altered motor functions assessed by inclined plane test, Kondziela’s inverted screen test and weights test. Cell cytotoxicity assessment following e-liquid exposure showed a significant decrease in hippocampal cell viability, but no change in cortical cell viability. Thereby, e-liquid without nicotine causes cognitive impairments, especially on the hippocampus. Based on these results, more extensive assessments on e-cigarettes must be carried out.

Disclosure statement

The authors declare that there are no conflicts of interest.

Funding information

Financial support of the Tunisian Ministry of Higher Education and Scientific Research is gratefully acknowledged. We appreciated the assistance of Abdelhamid Mselmi and Radhouen Ben Kram from the Tunis Faculty of Sciences during animal treatment period. We are extremely grateful to Olfa Masmoudi from the Tunis Faculty of Sciences for the preparation of cell suspensions from hippocampal and cortical tissues.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.