267
Views
20
CrossRef citations to date
0
Altmetric
Research Article

On the mechanism of genotoxicity of ethephon on embryonic fibroblast cells

, , , , &
Pages 173-180 | Received 14 Sep 2016, Accepted 13 Dec 2016, Published online: 08 Jan 2017
 

Abstract

Ethephon is one of the most widely used plant growth regulator in agriculture that its application has been increased in recent years. Many reports have raised concern over the safety of this organophosphorus compound. The aim of the current study was to assess the potential genotoxic effect of ethephon on murine embryonic fibroblast (MEF) cell line, using two genotoxicity endpoints: γH2AX expression and comet assay. γH2AX served as an early and sensitive biomarker of genotoxic damage. Oxidative stress biomarkers, including reactive oxygen species (ROS), lipid peroxidation (LPO) and total antioxidant capacity were also examined. The results showed a significant increase in cell proliferation, 24 h post-treatment with 10, 40,160 μg/ml ethephon, while at the higher concentrations cytotoxic effect was observed. The γH2AX expression and γH2AX foci count per cell were significantly increased at non-cytotoxic concentrations of ethephon, accompanied with increased DNA damage as illustrated by comet assay. LPO and ROS levels were elevated only at 160 μg/ml and higher doses. The results interestingly showed that low non-cytotoxic doses of ethephon promoted DNA damage inducing cell proliferation, raising the possibility of ethephon mutagenicity. The genotoxic effect of ethephon at low doses might not relate to oxidative damage and that increased in the level of ROS and LPO generation at higher doses could account for the cytotoxic effect of ethephon. Taken together, our study provides strong in vitro evidence on potential genotoxicity of ethephon at low doses. More precise studies are needed to clarify the mutagenic effect of chronic exposure to ethephon.

Acknowledgements

The authors thank the INSF and PSRC for supporting the postdoc program of the first author.

Disclosure statement

The authors declare that there are no conflicts of interest.

Additional information

Funding

Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, 94-01-45-29091.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.