242
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Quantitative measurement of oxidative damage in erythrocytes as indicator in benzene intoxications

, , , , & ORCID Icon
Pages 450-460 | Received 27 Oct 2017, Accepted 06 Mar 2018, Published online: 12 Apr 2018
 

Abstract

The metabolism of aromatic hydrocarbons by the organism forms products that cause cell death depending on the type of exposure. Benzene exposure has been linked to oxidative stress, hepatic damage, aplastic anemia, and hematopoietic cancer as lymphoid and myeloid leukemia. However, there are not fast methods to evaluate chronic benzene exposure in human blood. The objective of this work was the evaluation of the correlation between oxidative damage with benzene exposure and the level of cellular plasma membrane stability (CPMS) in erythrocytes to use it as a future indicator to determine the grade of benzene intoxications. CPMS in vitro assays were used to evaluate damage for benzene, toluene, and xylene. Erythrocytes CPMS assays in vitro shows a progressive reduction with benzene, toluene, and xylene suggesting that aromatic hydrocarbons complexity favors CPMS damage. Eight groups of Wistar rats (n = 5) were used to study the level of damage on CPMS by acute and chronic benzene administration. Enzymatic, metabolic, histological, and oxidative damage tests were performed. Acute administration (100 μL/100 g/single dose) showed a decrease of 66.7% in CPMS, while 63.6% for chronic administration (5 μL/100 g/every 2 days/3 months) showing a correlation with liver damage principally (transaminases activity increase, glycogen level decrease, and high oxidative damage). Tissue damage was observed in bone marrow, kidney, spleen, and lungs. Benzene produces damage on CPMS depending on the exposure time and dose. The CPMS technique could be used as an important aromatic hydrocarbons intoxication indicator.

Acknowledgments

The authors would like to thank Silvia Cortez for her technical support with sample preparation.

Disclosure statement

The authors declare no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.