245
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Redox modulatory protective effects of ω-3 fatty acids rich fish oil against experimental colitis

, , & ORCID Icon
Pages 244-254 | Received 13 Jun 2018, Accepted 25 Nov 2018, Published online: 16 Jan 2019
 

Abstract

Ulcerative colitis (UC), a form of inflammatory bowel disease (IBD), is an immune-modulated disorder characterized by chronic and recurring inflammatory episodes. Oxidative stress and COX pathway of prostaglandin (PG) biosynthesis are indispensable to pathogenesis of UC. Any imbalance between PGs can compromise the mucosal homeostasis, leading to mucosal damage and chronic inflammation. However, blocking these PGs using classical Cox inhibitors such as non-steroidal anti-inflammatory drugs (NSAIDs) can instead aggravate signs of IBD. Therefore, realizing the need for safer and well tolerable alterative treatment approaches, currently, we evaluated the efficacy of n-3 fatty acids rich fish oil (FO) in the resolution of UC. Using a dextran sodium sulfate (DSS) model of experimental colitis, we have demonstrated that supplementation of FO containing 180 mg EPA and 120 mg DHA for 1 month relieved the signs (diarrhea, bloody stools, weight loss) of colitis-associated inflammation. To understand the biophysical changes associated with FO mediated inflammatory regulation, impedance measurement and Fourier transform infrared spectroscopy (FTIR) were done. These changes were also correlated with oxidative stress through markers such as GST, glutathione peroxidase (GPx), LPO, catalase, protein carbonyl content, GR, etc. in colonic mucosa. The modulation of COX mediated pathways in UC-associated inflammation was observed by protein expressions of various pro-inflammatory cytokines such as TNF-α and enzymes of PG synthesis such as COX-2, PGES, TXAS, and anti-inflammatory PGDS. Refuting the earlier reports that suggested the contradictory effects of FO, in the current study, we evidently demonstrated that the protective effects of FO are mediated through molecular mechanisms involving the redox-regulation of metabolism of key lipid metabolites.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Research reported in this publication was supported by the UGC-SAP (F.4-1/2015/DSA-1 (Sap-II)) and and DSTFIST (SR/FST/LS1-645) programs sanctioned to the Department of Biophysics, Panjab University, Chandigarh (160014), India by University Grants Commission (UGC), Govt of India and Department of Science and Technology (DST), Govt of India respectively. The financial assistant to Panjab University by DST through DST-PURSE program is also duly acknowledged..

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.