212
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Neuromodulatory potential of phenylpropanoids; para-methoxycinnamic acid and ethyl-p-methoxycinnamate on aluminum-induced memory deficit in rats

, , , , , , , ORCID Icon, & ORCID Icon show all
Pages 334-343 | Received 30 Sep 2018, Accepted 18 Dec 2018, Published online: 04 Feb 2019
 

Abstract

Para-methoxycinnamic acid (PMCA) and Ethyl-p-methoxycinnamate (EPMC) are reported to possess neuroprotective effect in reversing an acute memory deficit. However, there is a dearth of evidence for their therapeutic effect in chronic memory deficit. Thus, there is a scope to study these derivatives against the chronic model of cognitive dysfunction. The present study was aimed to determine the cognitive enhancing activity of PMCA and EPMC in aluminum-induced chronic dementia. Cognitive enhancing property of PMCA and EPMC was assessed using Morris water maze by analyzing spatial memory parameters such as escape latency, D-quadrant latency, and island entries. To find a possible mechanism, the effect of test compounds on altered acetylcholinesterase (AChE) activity and oxidative stress was determined in the hippocampus and frontal cortex of rats. Docking interaction of these derivatives with acetylcholinesterase enzyme and glutamate receptors was also studied. Treatment with PMCA and EPMC showed a significant improvement in spatial memory markers and altered hippocampal AChE activity in rats with cognitive dysfunction. The implication of hippocampal and cortical oxidative stress in memory impairment was confirmed with decreased catalase/increased thiobarbituric acid reactive substances (TBARS) in rats. PMCA and EPMC reversed the oxidative stress in the brain by negatively affecting TBARS levels. Against depleted catalase levels, PMCA was more effective than EPMC in raising the depleted catalase levels. In silico analysis revealed poor affinity of EPMC and PMCA with AChE enzyme and glutamate receptor. To conclude, PMCA and EPMC exerted cognitive enhancing property independent of direct AChE and glutamate receptor inhibition.

Acknowledgements

The authors thank Manipal Academy of Higher Education, Manipal, India for providing the animal research facility and support towards the completion of the project.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.