681
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Hep G2 cell culture confluence measurement in phase-contrast micrographs – a user-friendly, open-source software-based approach

ORCID Icon
Pages 146-152 | Received 08 Oct 2019, Accepted 13 Nov 2019, Published online: 28 Nov 2019
 

Abstract

Phase-contrast micrographs are often used for confirmation of proliferation and viability assays. However, they are usually only a qualitative tool and fail to exclude with certainty the presence of assay interference by test substances. The complexity of image analysis workflows hinders life scientists from routinely utilizing micrograph data. Here, we present an open-source software-based, combined ilastik segmentation/ImageJ measurement of area (ISIMA) approach for cell monolayer segmentation and confluence percentage measurement of phase-contrast micrographs of Hep G2 cells. The aim of this study is to test whether the proposed approach is suitable for quantitative confirmation of proliferation data, acquired by the 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Our results show that ISIMA is user-friendly and provides reproducible data, which strongly correlates to the results of the MTT assay. In conclusion, ISIMA is an affordable, simple, and fast approach for confluence quantification by researchers without image analysis background.

Disclosure statement

No potential conflict of interest was reported by the author.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.