314
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

The implication of mitochondrial dysfunction and mitochondrial oxidative damage in di (2-ethylhexyl) phthalate induced nephrotoxicity in both in vivo and in vitro models

ORCID Icon, , , , , , & ORCID Icon show all
Pages 427-437 | Received 23 Jan 2020, Accepted 16 Apr 2020, Published online: 30 Apr 2020
 

Abstract

Di-(2-ethylhexyl) phthalate (DEHP) and its main metabolite, monoethylhexyl phthalic acid (MEHP), are a serious threat to human and animals’ health in the current century. However, their exact mechanism to induce nephrotoxicity is not clear. In the current study, we addressed toxic effects of MEHP and DEHP on embryonic human kidney cells (HEK-293 cell line) and kidney tissue of rats, respectively. In the HEK-293, MTT assay and oxidative stress parameters were measured after treatment with different concentrations of MEHP. For in vivo study, rats were treated with different doses of DEHP (50, 100, 200, 400 mg/kg) via gavage administration for 45 days. The renal function biomarkers (BUN and creatinine) were determined in serum of rats. Mitochondrial toxic parameters including MTT, mitochondrial membrane potential (MMP), mitochondrial swelling, and also oxidative stress parameters were measured in isolated kidney mitochondria. Histopathological effects of DEHP were also evaluated in rats’ kidneys. We demonstrated that MEHP induced oxidative stress and cytotoxicity in HEK-293 cells in a concentration dependent manner. The administration of DEHP led to histopathological changes in kidney tissue, which concurred with BUN and creatinine alternations in serum of rats. The results of present study showed a significant mitochondrial dysfunction and oxidative stress confirmed by enhancement of mitochondrial swelling, mitochondrial reactive oxygen species (ROS) and malondialdehyde (MDA), and reduction of MMP and mitochondrial glutathione (GSH). Taken together, this study showed that DEHP/MEHP resulted in mitochondrial dysfunction and oxidative damage, which suggest a vital role of mitochondria in DEHP/MEHP-induced nephrotoxicity.

Graphical Abstract

Disclosure statement

The authors declare that there are no conflicts of interest.

Additional information

Funding

The present study was supported by a PhD student grant from the research council of Mazandaran University of Medical Sciences, Sari, Iran. [Reference number: IR.MAZUMS.REC.1397.3411]

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.