173
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Induction of genotoxicity and differential alterations of p53 and inflammatory cytokines expression by acute oral exposure to bulk- or nano-calcium hydroxide particles in mice
"Genotoxicity of normal- and nano-calcium hydroxide"

Pages 169-181 | Received 28 Sep 2020, Accepted 10 Nov 2020, Published online: 22 Dec 2020
 

Abstract

With the high increases in the uses of calcium hydroxide in various applications due its distinctive properties, human exposure has increased to normal- and nano-calcium hydroxide. However, its impact on the DNA integrity, expression of inflammatory cytokines, and induction of oxidative stress has not been clearly studied. Therefore, here we estimate the induction of DNA damage, inflammation, and oxidative stress in mice orally administrated a single dose (100 mg/kg) of normal- or nano-sized calcium hydroxide for 24 hour. Comet, Diphenylamine and laddered DNA fragmentation assays were done to assess DNA damage induction. Acute oral administration of normal- or nano-calcium hydroxide particles disrupted the DNA integrity, caused generation of ROS and also concurrent increases in both the nitric oxide concentration and inducible nitric oxide synthase gene expression in a reverse proportional to the calcium hydroxide particles' size. Increases in the concentration of calcium ions as well as alterations in the expression level of p53 and proinflammatory cytokines were also observed in calcium hydroxide administrated groups. Moreover, administration of normal- or nano-calcium hydroxide particles suspension elevated the level of malondialdehyde and decreased both the glutathione peroxidase activity and the reduced glutathione level, as well as caused tissue injuries (e.g. renal tube degeneration, congested blood vessels, atrophied lymphoid follicles, interstitial inflammatory reaction, and hyalinosis of myocardial muscles). Thus, we conclude that calcium hydroxide acutely orally administrated in its ordinary or nano-particulate form causes DNA damage induction by generating free radicals and altering the expression levels of p53 gene and proinflammatory cytokines.

Acknowledgement

Great thank and appreciation to the Faculty of Science Cairo University for supplying us with the required chemicals and devices to perform the experimentations of this study.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Faculty of Science Cairo University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.