281
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Effects of imidacloprid on viability and increase of reactive oxygen and nitrogen species in HepG2 cell line

, , & ORCID Icon
Pages 204-212 | Received 16 Jun 2021, Accepted 05 Oct 2021, Published online: 26 Oct 2021
 

Abstract

Imidacloprid (IMD) is a neonicotinoid insecticide used in large quantities worldwide in both veterinary and agronomic applications. Several studies have shown adverse effects of IMD on non-target organisms, with the liver being identified as the main affected organ. This study aimed to evaluate the effects of IMD on human hepatoblastoma (HepG2) cells. HepG2 were exposed to IMD (0.25–2.0 mM) for 24 and 48 h. IMD treatment resulted in cytotoxicity in the HepG2, inhibiting cell proliferation in a dose- and time-dependent manner, starting at concentrations of 0.5 mM (24 h) and 0.25 mM (48 h), and reducing cell viability from 0.5 mM onwards (24 and 48 h). IMD significantly decreased the mitochondrial membrane potential at both time points investigated (2.0 mM), and also induced damage to the cell membrane, demonstrated by significant dose and time-dependent increases in lactate dehydrogenase (LDH) release from concentrations of 1.0 mM (24 h) and 0.5 mM (48 h) upwards. IMD treatment also increased the production of reactive oxygen and nitrogen species (ROS/RNS) at rates above 50% following 0.5 mM (24 h) or 0.25 mM (48 h) concentrations, and caused a significant decrease in reduced/oxidized glutathione ratio (GSH/GSSG), indicating oxidative stress. Furthermore, the antioxidant dithiothreitol, which reacts with ROS/RNS and acts as a thiol reducing agent, inhibited the cytotoxic effect of IMD. In addition, the metabolite IMD-olefin was more toxic than IMD. Our results indicate that IMD induces cytotoxicity in HepG2 cells and that this effect may be associated with an increase in the generation of ROS/RNS.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP (Grant number 2015/19549-8) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.