124
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Furan promotes cytotoxic effects through DNA damage and cell apoptosis in Leydig cells

ORCID Icon, ORCID Icon & ORCID Icon
Pages 796-805 | Received 11 Apr 2023, Accepted 20 Jul 2023, Published online: 01 Aug 2023
 

Abstract

Furan is an organic chemical that can cause adverse effects on human health and is formed as a result of the thermal decomposition of many food components during cooking, storage, and processing techniques. Studies have shown that exposure to furan causes nephrotoxicity, hepatotoxicity, immunotoxicity, and reproductive toxicity. According to our current knowledge of the literature, the genotoxic mode of action of furan is highly controversial. The genotoxic effects of furan on the male reproductive system, however, have not been studied. In this study, the TM3 Leydig cell line was treated with 750, 1500, and 3000 μM concentrations of furan for 24 h. Following the completion of the exposure period, the cytotoxicity of furan in TM3 Leydig cells was assessed using a cell viability assay and a spectrophotometric measurement of lactate dehydrogenase (LDH) enzyme levels. The double fluorescence staining method was used to demonstrate furan-induced apoptosis, and DNA damage was shown using the micronucleus, comet, and chromosomal aberration assays. The result indicated that furan administration of Leydig cells resulted in an increase in structural chromosomal aberration, comet, and micronucleus formation, reduced cell viability, increased LDH activity, and a higher incidence of apoptotic cells. These findings revealed that furan induces DNA damage in TM3 Leydig cells, causing genotoxicity and DNA damage-induced cytotoxicity.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

All data are available from the corresponding author upon reasonable request.

Additional information

Funding

This study was supported by Bilimsel Araştirma Projeleri Birimi, Istanbul University Scientific Research Projects (Project No. 38599).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.