488
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of geometrically personalized THUMS pedestrian model response against sedan–pedestrian PMHS impact test data

, , , &
Pages 542-548 | Received 22 Aug 2017, Accepted 07 Mar 2018, Published online: 03 May 2018
 

ABSTRACT

Objective: Evaluating the biofidelity of pedestrian finite element models (PFEM) using postmortem human subjects (PMHS) is a challenge because differences in anthropometry between PMHS and PFEM could limit a model's capability to accurately capture cadaveric responses. Geometrical personalization via morphing can modify the PFEM geometry to match the specific PMHS anthropometry, which could alleviate this issue. In this study, the Total Human Model for Safety (THUMS) PFEM (Ver 4.01) was compared to the cadaveric response in vehicle–pedestrian impacts using geometrically personalized models.

Methods: The AM50 THUMS PFEM was used as the baseline model, and 2 morphed PFEM were created to the anthropometric specifications of 2 obese PMHS used in a previous pedestrian impact study with a mid-size sedan. The same measurements as those obtained during the PMHS tests were calculated from the simulations (kinematics, accelerations, strains), and biofidelity metrics based on signals correlation (correlation and analysis, CORA) were established to compare the response of the models to the experiments. Injury outcomes were predicted deterministically (through strain-based threshold) and probabilistically (with injury risk functions) and compared with the injuries reported in the necropsy.

Results: The baseline model could not accurately capture all aspects of the PMHS kinematics, strain, and injury risks, whereas the morphed models reproduced biofidelic response in terms of trajectory (CORA score = 0.927 ± 0.092), velocities (0.975 ± 0.027), accelerations (0.862 ± 0.072), and strains (0.707 ± 0.143). The personalized THUMS models also generally predicted injuries consistent with those identified during posttest autopsy.

Conclusions: The study highlights the need to control for pedestrian anthropometry when validating pedestrian human body models against PMHS data. The information provided in the current study could be useful for improving model biofidelity for vehicle–pedestrian impact scenarios.

Acknowledgments

The authors acknowledge Aaron Steinhilb and Robert Paneck (Toyota Motor Engineering & Manufacturing, North America) for their contribution to the design of the study, Dr. Taewung Kim for support on the injury risk functions, and Timothy Gillispie for reviewing the article.

Additional information

Funding

This work was supported by the Toyota Collaborative Safety Research Center

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 331.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.