565
Views
12
CrossRef citations to date
0
Altmetric
Articles

Influence of the feedback links of connected and automated vehicle on rear-end collision risks with vehicle-to-vehicle communication

&
Pages 79-83 | Received 29 May 2018, Accepted 19 Sep 2018, Published online: 04 Feb 2019
 

Abstract

Objective: Connected and automated vehicles (CAV) can monitor multiple vehicles ahead via vehicle-to-vehicle (V2V) communication. Although feedback information from more vehicles ahead may be more helpful for anticipations, it also makes control more complex and increases the probability of data packet loss. Then it needs an appropriate number of CAV feedback links, and the maximum number may be not suitable. Therefore, this article focuses on the influence of CAV feedback links on rear-end collision risks.

Methods: To deal with this, stability analysis of a CAV car-following model was conducted to obtain the designs of CAV feedback gains for maintaining stable CAV flow. Simulation experiments were performed to describe a traffic accident on freeway, using car-following models of manually driven vehicles (MDVs) and CAV under different CAV penetration rates. Four scenarios are considered in simulation experiments; that is, the CAV monitors 1, 2, 3, and 4 preceding vehicles, respectively. Based on the simulation experiments, surrogate safety indicators, time-exposed time-to-collision (TET), and time-integrated time-to-collision (TIT) are used to evaluate risks of rear-end collisions.

Results: Results indicated that CAV helped to decrease the collision risks, especially the more serious collision risks with smaller threshold values of time-to-collision (TTC). In addition, the reductions in collision risks are more obvious when CAV feedback changes from one link to 2 links. In addition, reducing amplitudes are not significant if the CAV feedback is extended from 2 links to 3 or 4 links.

Conclusions: Two links of CAV feedback are appropriate when control complexity is a priority, whereas 3 links is the better choice when reductions in collisions are a priority. The findings of this study provide helpful reference for CAV control and design before larger-scale implementation in real vehicles.

Additional information

Funding

This work was financially supported by the National Natural Science Foundation of China (51478113; 51878161), the Scientific Research Foundation of Graduate School of Southeast University (YBJJ1792), and the Fundamental Research Funds for the Central Universities and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_0146).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 331.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.