505
Views
9
CrossRef citations to date
0
Altmetric
Articles

Evaluation of finite element human body models for use in a standardized protocol for pedestrian safety assessment

, , , &
Pages S32-S36 | Received 06 Mar 2019, Accepted 24 Jun 2019, Published online: 29 Jul 2019
 

Abstract

Objective: Finite element human body models (HBMs) must be certified for use within the EuroNCAP pedestrian safety assessment protocol. We demonstrate that the Global Human Body Model Consortium (GHBMC) simplified pedestrian series of HBMs meet all criteria set forth in Technical Bulletin (TB) 024 (v 1.1 Jan. 2019) for model certification. We further explore variation in head contact time (HIT) and location by HBM size and impact speed across 48 full body impact simulations.

Methods: The EuroNCAP Pedestrian Protocol (v. 8.5, Oct. 2018) assesses the overall safety of adult and child pedestrians by outlining a variety of physical tests and finite element simulations using HBMs. These tests are designed to assess the efficacy of vehicle safety technology such as active bonnets. The 50th percentile male simplified pedestrian model (M50-PS, H:175 cm, W:74.5 kg), six-year-old (6YO-PS, H:117 cm, W:23.4 kg), 5th percentile female (F05-PS, H:150 cm, W:50.7 kg), and 95th percentile male (M95-PS, H:190 cm, W:102 kg) were simulated through the suite of cases totaling 48 simulations (12 each). The process gathers three kinematic trajectories and contact force data from designated anatomical locations. The impacting vehicles include a family car (FCR), multi-purpose vehicle (MPV), roadster (RDS), and sports utility vehicle (SUV), all provided by TU Graz, Vehicle Safety Institute as part of the Coherent Project, each simulated at 30 kph, 40 kph, and 50 kph. Each simulation underwent a 23-point pre-simulation check and post-simulation model response comparison. The posture of all HBMs met criteria consisting of 15 measures. All simulations were conducted in LS-Dyna R. 7.1.2.

Results and Conclusions: All simulations normal terminated. For each of the simulations, sagittal plane coordinate histories of the center of the head, 12th thoracic vertebrae, and center of acetabulum were compared with standard corridors and did not exceed the tolerance of 50 mm deviation. Head contact time was also compared with the reference values and did not exceed the tolerance interval of +3.5% and -7%. Comparison of contact forces was required for monitoring purposes only. The head contact time of the models for each simulation was recorded and compared by model size, impact speed, and vehicle geometry. Head contact times varied by roughly 3-fold, were lowest for the child model, and showed the greatest sensitivity for the tallest stature model (M95-PS). As stated in the certification process, other body sizes within a model family qualify for certification if the 50th percentile male model passes, provided that model sizes meet the required posture.

Acknowledgments

All simulations were run on the DEAC cluster at Wake Forest University with support by Adam Carlson and Cody Stevens.

Disclosure statement

F. Scott Gayzik is a member of Elemance, LLC, which distributes academic and commercial licenses for the use of GHBMC-owned computational human body models.

Additional information

Funding

This work was supported by the Global Human Body Models Consortium, LLC and the NHTSA under GHBMC Project No. WFU-006.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 331.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.