510
Views
7
CrossRef citations to date
0
Altmetric
Short Communications from the AAAM 63rd Annual Scientific Conference

Age and gender differences in emergency takeover from automated to manual driving on simulator

, , &
Pages S163-S165 | Published online: 30 Oct 2019
 

Abstract

Objective: The objective of this study was to explore how age and sex impact the ability to respond to an emergency when in a self-driving vehicle.

Methods: For this study, 60 drivers (male: 48%, female: 52%) of different age groups (teens: aged 16–19, 32%, adults: aged 35–54, 37%, seniors: aged 65+, 32%) were recruited to share their perspectives on self-driving technology. They were invited to ride in a driving simulator that mimicked a vehicle in autopilot mode (longitudinal and lateral control).

Results: In a scenario where the automated vehicle unexpectedly drives toward a closed highway exit, 21% of drivers did not react at all. For this event, where drivers had 6.2 s to avoid a crash, 40% of drivers crashed. Adults aged 35–54 crashed less than other age groups (33% crash rate), whereas teens crashed more (47% crash rate). Seniors had the highest crash rate (50% crash rate). Males (38% crash rate) crashed less than females (43% crash rate). All participants with a reaction time less than 4 s were able to avoid the crash.

Conclusions: The results from the simulation drives show that humans lose focus when they do not actively drive so that their response in an emergency does not allow them to reclaim control quickly enough to avoid a crash.

Acknowledgments

The authors acknowledge the National Science Foundation (NSF) Center for Child Injury Prevention Studies IU/CRC at the Children’s Hospital of Philadelphia (CHOP) and the Ohio State University (OSU) for sponsoring this study and its Industry Advisory Board (IAB) members for their support, valuable input, and advice. The views presented here are solely those of the authors and not necessarily the views of CHOP, CIRP, OSU, the NSF, or the IAB members.

Additional information

Funding

This material is also based upon work supported by the National Science Foundation under Grant Number EEC-1062166 through the Industry/University Center for Collaborative Research Center: Center For Child Injury Prevention Studies.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 331.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.