609
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Inattentional blindness to unexpected hazard in augmented reality head-up display assisted driving: The impact of the relative position between stimulus and augmented graph

, , , , , , & show all
Pages 344-351 | Received 18 Sep 2022, Accepted 23 Feb 2023, Published online: 20 Mar 2023
 

Abstract

Objective

An augmented reality head-up display (AR-HUD) is a promising technology in assisted driving. It provides additional information in the driving environment. However, considering the registration problem related to the limitations of interactive technology, we suspect that an AR-HUD may not be able to recognize unpredictable stimuli in a timely manner, inducing inattentional blindness to these non-augmented stimuli. Actually, non-augmented stimuli may accidentally have a brief superimposition to AR graphics. This condition may also influence the rate of inattentional blindness accordingly. Thus, this study examined the problem of inattentional blindness in AR-HUD systems that may result from the immaturity of AR technology.

Method

We investigated the impact of AR graphic position (peripheral AOI v.s. central AOI) and the relative position of the AR graphic on unpredictable stimuli (on-HUD hazard v.s. off-HUD hazard) on the occurrence of inattentional blindness. Thirty Participants watched an AR-augmented driving video that included four augmented conditions. Participants were instructed to respond to four critical events (speeding, running of red lights, unexpected pedestrians or motorcycles). The rate of inattentional blindness and response time were recorded. We only analyzed data on unexpected pedestrian and motorcycle incidents.

Results

The relative position of the AR graphic on unpredictable stimuli and AR graphic positions significantly affected the rate of inattentional blindness and response time. Drivers had a higher rate of inattentional blindness to the unpredictable stimulus briefly superimposed on the AR graphic (i.e., on-HUD hazard) in the peripheral visual field (i.e., peripheral AOI). Also, drivers exhibited a higher rate of inattentional blindness to the unpredictable stimuli outside the AR graphic (i.e., off-HUD hazard) in the central visual field (i.e., central AOI).

Conclusion

The study is expected to be beneficial for furthering the design of an AR-HUD-assisted system to reduce inattentional blindness in driving. Our results found that in the peripheral visual field, unpredictable stimuli accidentally superimposed on the AR graphic (i.e., on-HUD hazard) lead to a higher probability of ignoring the accidental events and seemed to require a longer response time for drivers. This study illustrated that inattentional blindness to non-augmented stimuli is also influenced by the AR graphic position when AR technology fails to augment them in a timely manner. An important recommendation emerging from this work is to consider the design of AR graphics according to the AR graphic positions and stimulus types to reduce the occurrence of inattentional blindness.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China under Grant [31900768, T2192930, T2192931]; Outstanding graduate dissertation cultivation foundation of Zhejiang Sci-Tech University under Grant [LW-YP2021016].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 331.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.