313
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Hydroxyapatite incorporated bacterial cellulose hydrogels as a cost-effective 3D cell culture platform

ORCID Icon, ORCID Icon & ORCID Icon
Pages 183-192 | Received 21 Nov 2020, Accepted 09 Jun 2021, Published online: 05 Jul 2021
 

ABSTRACT

For cell and tissue physiology research, drug discovery, and growing replacement tissues for regenerative medicine, accurate and cost-efficient in vitro techniques are increasingly demanded. The conventional model for in vitro cell culture is the two-dimensional (2D) culture. Yet, cells have been found to be more native when they are grown in 3D conditions. We present here the development and evaluation of biological properties of bacterial cellulose/hydroxyapatite (BC/HA) nanocomposite hydrogel as a potential 3D cell-culture platform. The synthesized composites were characterized using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Swelling measurements and Celltiter 96® Aqueous One Solution Cell Proliferation Assay (MTS) using mouse fibroblast cell line (L – 929). The arrangement of composites shown in SEM and AFM images closely resembles the native extracellular matrices (ECM) showing the potential to act as a viable substrate for cell culture. The composites exhibited high swelling ratio (5.31–5.81), indicating enhanced moisture absorption and potential for nutrient exchange. The in vitro biocompatibility results indicated significantly high percentage cell proliferation (85.20%-88.30%). These findings indicate that the BC/HA composites are potential candidates for 3D cell-culture applications.

Acknowledgments

Authors gratefully acknowledge National Institute of Fundamental Studies Sri Lanka, Sri Lanka Institute of Nanotechnology and RMIT University, Australia.

Disclosure of Conflicts of Interests Statement

The authors declare no conflict of interest.

Additional information

Funding

This work was supported by the University Research Grant, University of Peradeniya, Sri Lanka [URG/2017/50/S].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 583.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.