239
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Modeling and Analysis of Vibration-Induced Changes in Connector Resistance of High Power Electrical Connectors for Hybrid Vehicles

, , , &
Pages 349-365 | Received 13 Feb 2011, Accepted 19 Aug 2011, Published online: 05 Jul 2012
 

Abstract

High power connectors used in hybrid vehicles are exposed to vibrations that cause changes in connector resistance. When vibration starts, the connector resistance increases temporarily and oscillates. When vibration stops, the connector resistance returns to a value that is similar to the original state. In this paper, finite element models are developed to analyze this phenomenon and compared with experimental results. A two-dimensional finite element model was developed to predict the motions at any location of the connector system. A contact spring present between the female and male parts of the connector is modeled in three dimensions and used to analyze the time response. The analysis shows that the relative displacement is closely related to the changes of connector resistance during vibration, and the models can be used to improve connector design and ensure better performance and reliability.

ACKNOWLEDGMENT

This work has been funded by LS Cable Company, Ltd. Without their strong support, this project could not have happened.

Notes

#Communicated by J. McPhee.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.