355
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Nanometric positioning accuracy in the presence of presliding and sliding friction: Modelling, identification and compensation

&
Pages 111-126 | Received 27 Oct 2015, Accepted 29 Jan 2016, Published online: 22 Apr 2016
 

ABSTRACT

Presliding and sliding frictional effects, limiting the performances of ultrahigh precision mechatronics devices, are studied in this work. The state-of-the-art related to frictional behavior in both motion regimes is, hence, considered, and the generalized Maxwell-slip (GMS) friction model is adopted to characterize frictional disturbances present in a micromanipulation device. All the parameters of the model are identified via experimental set-ups and included in the overall MATLAB/SIMULINK model. With the aim of compensating frictional effects, the modelled response of the system is thus compared to experimental results when using proportional-integral-derivative (PID) control, feed-forward model-based compensation and a self-tuning adaptive regulator. The adaptive regulator proves to be the most efficient and is, hence, used in the final repetitive point-to-point positioning tests allowing to achieve nanometric precision and accuracy.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.