269
Views
28
CrossRef citations to date
0
Altmetric
Articles

On size-dependent nonlinear free vibration of carbon nanotube-reinforced beams based on the nonlocal elasticity theory: Perturbation technique

, ORCID Icon, &
Pages 2124-2146 | Received 06 Dec 2019, Accepted 18 May 2020, Published online: 08 Jun 2020
 

Abstract

Based on the first-order shear deformation (FSD) model and nonlocal elasticity theory, the simultaneous effects of shear and small scale on the nonlinear vibration behavior of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) beams are investigated for the first time. To this end, the governing equations of bending and stretching with von Kármán geometric nonlinearity are decoupled into one fourth-order partial differential equation in terms of transverse deflection. A closed-form solution of the nonlinear natural frequency, which can be used in conceptual design and optimization algorithms of FG- CNTRC beams with different boundary conditions, is developed using a hybrid method of Galerkin and perturbation technique. First, the decoupled equation is reduced to a nonlinear ordinary one with respect to time by implementing the Galerkin method. Next, multiple scales perturbation technique is used to replace this nonlinear ordinary differential equation with a series of linear equations which can be solved analytically. Finally, numerical results are presented to compare with the existing ones in the literature as well as to study the effects of CNTs distribution, boundary conditions and nonlocal parameter on the frequency ratio. It is seen that the influence of CNTs distribution becomes more significant when the nonlocal parameter increases. Also, the difference between results obtained from the classical and nonlocal elasticity theories increases as the amplitude of vibration increases. Therefore, it is concluded that the classical elasticity theory is inadequate to predict the nonlinear vibration behavior of FG-CNTRC beams with large deformation.

Additional information

Funding

The authors gratefully acknowledge supports from Iran National Science Foundation (INSF).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.