391
Views
64
CrossRef citations to date
0
Altmetric
Articles

Vibrational characteristics of a FG-GPLRC viscoelastic thick annular plate using fourth-order Runge-Kutta and GDQ methods

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2471-2492 | Received 16 Feb 2020, Accepted 03 Jun 2020, Published online: 29 Jun 2020
 

Abstract

This is the first research on the vibrational analysis of functionally graded graphene platelets reinforced composite (FG-GPLRC) viscoelastic annular plate within the framework of higher order shear deformation theory (HSDT). Hamilton’s principle is employed to establish governing equations of motion within the framework of HSDT. In this article, viscoelastic properties are modeled according to Kelvin-Voigt viscoelasticity. The deflection as the function of time can be solved by the fourth-order Runge-Kutta numerical method. Generalized differential quadrature method is applied to obtain numerical solution. Numerical results are compared with those published in the literature to examine the accuracy and validity of the applied approach. A comprehensive parametric study is accomplished to reveal the influence of viscoelasticity coefficient, weight fraction, boundary conditions, and distribution patterns of GPLs on the frequency response of the structure. The results revealed that applying locating more square shaped GPLs in the vicinity of the top and bottom surface results into the highest natural frequency. Another important consequence is that FG-GPLRC structure with FG-V, FG-A, and UD patterns have similar effect on the natural frequency of the GPLRC annular plate while FG-X has the best stability and natural frequency. A useful suggestion of this research is that, increasing the value of the length to thickness ratio of GPL not only decreases the central deflection of the structure through time, but also causes to decrease real time domain changes for the FG-GPLRC viscoelastic annular plate.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.