249
Views
18
CrossRef citations to date
0
Altmetric
Articles

On the NURBS-based isogeometric analysis for couple stress-based nonlinear instability of PFGM microplates

, & ORCID Icon
Pages 816-840 | Received 10 Sep 2020, Accepted 17 Nov 2020, Published online: 09 Dec 2020
 

Abstract

A porosity-dependent nonlinear postbuckling analysis for microplates prepared from a porous functionally graded material (PFGM) is performed based on the modified couple stress theory of elasticity (MCSTE). To accomplish this purpose, the modified couple stress-based nonlinear differential equations are derived by third-order shear deformation plate theory (TSDPT). To extract PFGM microplate effective mechanical properties, a power-law function is utilized which is capable of incorporating porosity dependency and material gradient, simultaneously. Thereafter, the non-uniform rational B-spline (NURBS)-based isogeometric analytical method is employed as an effective discretization method which could satisfy C−1 continuity condition. It is demonstrated that the gap between equilibrium paths relevant to various couple stress length scales reduces by going deeper in postbuckling regime. Also, one can see that for certain porosity and material property gradient index values, by boundary condition transformation from simply supported to clamped, the contribution of the effect of couple stress size in PFGM microplate postbuckling response becomes more significant, especially for a higher maximum deflection values.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.