91
Views
0
CrossRef citations to date
0
Altmetric
Articles

On the three-dimensional dynamics of microtubule by considering initially stress

, &
Pages 3046-3065 | Received 15 May 2020, Accepted 07 Apr 2021, Published online: 05 May 2021
 

Abstract

To design anticancer drug Taxol working more efficiently, looking at details of microtubules' dynamic behavior has become more important for researchers worldwide. According to this issue, dynamic stability analysis of microtubule-associated proteins (MAPs) using the state-space technique based on three-dimension elasticity theory is presented. Besides, the MAPs structure is under various body pressure. The state-space technique is applied along the radial direction, and the differential quadrature method (DQM) along the axial direction in the case of another end supports. The novelty of the current study considers the various boundary conditions for MAPs structure and body pressure, which is implemented on the proposed model using the theory of Three-dimension (3D) elasticity. The validity of applied solutions is examined by comparing results with those of available literature, experimental data, and molecular dynamic (MD) simulation outcomes. A thorough parametric investigation is conducted on the effect of initial stress, boundary conditions, and geometry of the shell (such as mid-radius to thickness and length to mid-radius ratios) on the dynamic stability of the MAPs structures under initial stress.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.