224
Views
5
CrossRef citations to date
0
Altmetric
Articles

Effect of material distribution on bending and buckling response of a bidirectional FG beam exposed to a combined transverses and variable axially loads

, , ORCID Icon, , &
Pages 2193-2212 | Received 03 Nov 2022, Accepted 11 Jan 2023, Published online: 02 Feb 2023
 

Abstract

This article considers a bidirectional functionally graded (BDFG) beam with various distributions of volume fraction. The impact of these distributions on the buckling and bending response of BDFG beam with general boundary conditions is investigated via a quasi-3D solution. It is assumed that the beam is exposed to a set of in-plane varying compressive loads and there mechanical characteristics change in both directions. Also, the BDFG beam is considered to be exposed different external mechanical loads. Hamilton’s principle is employed to derive the governing equations, which are then solved using analytical solution to obtain buckling and bending characteristics. The precision of the current formulation is investigated via a comparison with available data in literature. Some numerical results are presented and discussed to assess the effect of different parameters such type of volume fraction, boundary condition, varying load, and beam geometry on the buckling and bending of BDFG beam.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.