75
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A nonlinear optimal control approach for multi-DOF redundant robotic manipulators

Pages 4415-4445 | Received 24 Jan 2022, Accepted 12 Jun 2023, Published online: 06 Jul 2023
 

Abstract

A nonlinear optimal (H-infinity) control approach is proposed for the dynamic model of multi-DOF redundant robotic manipulators. Because of the complicated kinematics and dynamics and the high dimensionality of the state-space model of such robots, the related control problem is of elevated difficulty. In the present article, a three-link planar robotic manipulator it considered. The article’s approach relies first on approximate linearization of the state-space model of the redundant robotic manipulator, according to first-order Taylor series expansion and the computation of the related Jacobian matrices. For the approximately linearized model of the manipulator, a stabilizing H-infinity feedback controller is designed. To compute the controller’s gains an algebraic Riccati equation is solved at each time-step of the control algorithm. The global stability properties of the control scheme are proven through Lyapunov analysis. The proposed control method retains the advantages of typical optimal control, that is fast and accurate tracking of the reference setpoints under moderate variations of the control inputs.

Additional information

Funding

This article was funded by Unit of Industrial Automation / Industrial Systems Institute.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.