182
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Vibration analysis of bio-inspired sandwich composite beam under rotating environment based on the Internet of Things technology

&
Received 29 Nov 2023, Accepted 21 Feb 2024, Published online: 05 Mar 2024
 

Abstract

Sandwich composite materials with corrugated cores are mostly used in industries like aircraft, marine construction, automobiles, and construction. Sandwich composite constructions are made for their lightweight, high strength, and high stiffness, and also the sandwich core composite structures are useful for dynamic studies. A novel design inspired by a woodpecker beak microstructure creates fillet edge and champer edge designs. This novel design motivates us to achieve the energy absorbing results starting with free vibration studies followed by rotating environment vibration studies. ASTM E1876 standards, a non-destructive approach, are used to determine the material properties of carbon fiber-polylactic acid (CF-PLA) and glass fiber reinforced polymer (GFRP), along with alternative dynamic method (ADM) for core property evaluation. The hand lay-up technique is used for fabrication and evaluated for free vibration testing with appropriate boundary conditions. Internet of Things technology has been used for analyzing vibrations of sandwich structures in rotating environment setup with 250, 500, 750, and 1000 rpm. It was observed that the fillet edge pattern has a more efficient natural frequency than the champer edge pattern. Furthermore, the parametric evaluations were performed in various ply configurations in numerical simulations for free vibration and the rotating Environment. Also, the effective results are seen in fillet core bioinspired sandwich structure that achieves efficient stiffness in both free vibration and rotational environments, despite various boundary conditions and parametric circumstances. Therefore, the fillet edge 3D printed core design with particular GFRP factsheet orientation brings out the novelty of this research.

Acknowledgments

We thank the VIT faculties, Advanced Vibration Laboratory, and Vellore Institute of Technology for carrying out the research work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.