73
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nonlinear postbuckling and snap-through instability of movable simply supported BDFG porous plates rested on elastic foundations

, , , &
Received 22 Dec 2023, Accepted 04 Mar 2024, Published online: 21 Mar 2024
 

Abstract

This study presents, for the first time, a novel mathematical model that can address the nonlinear buckling, postbuckling, and snap-through of bidirectional functionally graded porous simply supported plates rested on elastic foundation and subjected to uniaxial/biaxial compressive loads. The parabolic shear deformation plate theory and the von Kármán strain nonlinearity are employed to derive governing equilibrium equations relative to neutral surface plane. The governing equations that consist of four nonlinear-coupled variable-coefficients partial differential equations are discretized by using the differential/integral quadrature method. The solution methodology depends on whether the discretized nonlinear algebraic system is homogeneous (with zero force vector) or nonhomogeneous. A homogeneous system can be formulated and solved as a nonlinear eigenvalue problem. Pseudo-arc-length continuation is implemented with a proposed iterative method to predict the load-deflection paths whether the system is homogeneous or not. Theoretical analysis and numerical results indicate that the type of porosity and position of in-plane loading have significant effects on the pitchfork-bifurcation or snap-through instability response of the bidirectional functionally graded porous plate. Parametric studies are presented to illustrate the impact of gradation indices, geometrical properties, porosity, and foundation constants on the postbuckling responses of bidirectional functionally graded porous plates. The proposed model may be used in designing nuclear, marine, aerospace, and civil structures with bi-directional functionally graded material constituents.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.