24
Views
0
CrossRef citations to date
0
Altmetric
Method

Comparative analysis for optimal placement of piezoelectric actuators on smart thin plate

, , , &
Received 23 Jan 2024, Accepted 13 Jun 2024, Published online: 02 Jul 2024
 

Abstract

In contemporary smart structures, piezoelectric ceramic (PZT) actuators serve a crucial structural function. To construct a smart thin plate that integrates structural health monitoring (SHM) and active vibration control objectives, many placement methodologies were discussed. In current research, two positioning strategies of the attached PZT actuators are compared. The first strategy is a well-known controllability concept where PZT actuators’ optimum positions are obtained by maximizing the eigenvalues of the controllability Grammian matrix. The second strategy employs the energy concept to strategically position PZT actuators so that the utmost amount of exerted work is accomplished by the actuators. Thus, the optimal performance of actuators to provide energy for mitigating unwanted vibrations is maintained, as is the optimal excitation required for SHM in the designated modes. Kirchoff’s classical laminate plate theory (CLPT) is used to define displacements as well as the normal strains of this coupled electro-mechanical system, and then, using the Ritz solution, the modal eigenvalue problem is solved, and mode shapes are obtained. Consequently, normal strains are transformed into spatially dependent functions used to define both the virtual work and the controllability of the Grammian matrix for the PZT actuators as a function of their locations. Finally, iterative optimization based on a genetic algorithm (GA) is used to find the optimum actuator locations in the desired modes. The best location for the PZT actuator or actuators is explored for two specimen plates with different boundary conditions. The results for the two studied positioning strategies are then compared, showing the superiority of the proposed energy-based strategy. Further, a quantitative variance-based uncertainty analysis reveals a low variance of the output results for the proposed strategy.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Replication of results

The introduced comparative analysis for optimal placement of piezoelectric actuator/s on smart thin plate shows that energy-based methodology is more effective than controllability-based placement methodology, since the energy-based methodology is capable of manipulating the applied voltage as an optimization parameter in contradiction to controllability-based methodology. And hence, actuators can be placed where the maxima strains exist regardless these maxima are of the same sign or not. Then the overall exerted work of energy-based actuator/s shall be more than that exerted by controllability-based actuator/s when different sign strain maxima are introduced. Which can be improvement of PZT actuators placement strategies that helps increasing the actuators efficiency for both SHM and AVC at designated natural modes.

Data availability statement

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.