60
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

New Scaffold Structure Based on Collagen. Fabrication and Biocompatibility Evaluation

, , , , , & show all
Pages 147/[1189]-156/[1198] | Published online: 22 Sep 2010
 

Abstract

Development of bioactive material template for in vitro and in vivo synthesis of osteoinductive and biodegradable bone material was intensevely studied over the last decade and the research in the field of partial substitution of bone tissue, use a very large range of natural and synthetic polymers, inorganic components and their composites. Despite of composites collagen hydroxiapatite with a mimetic osseous composition until now was not defined a scaffold model suitable to biofunctionality of native osseous structure. The goal of the article is fabrication of a new scaffold structure, based on collagen fibrils with length 1–1.5 cm, thikness 0.1–0.3 and having a shroud structure. Collagen crosslinking was performed with aldehides in such way that aminic groups became bloked and carboxylic groups remain free in order to involve hydroxiapatite and biocompatible synthetic polymer (polyvinil alchol, polilactide) coupling. Crosslinking temperature for collagen fibrils is 70°C being a suitable temperature for resistance to “in vivo” resorbtion. Infrared spectra was performed and the amount of the hidroxyl bonds was correlated with hydrophilic [Citation2] balance estimated from contact angle measurements. The morphology and the surface composition were determined with an Environmental Scanning Electron Microscope FEI/Phillips XL30 ESEM and all physical chemical properties especially surface features were used as basic factors in future cell growth and proliferation process. The main aim of biocompatibility tests is to multiply and to differentiate cells in vitro in osteoblasts from marrow. The environment of culture was supplemented with specific media containing Na β glicerofosfat and the cell was differentiated in osteoblasts. As arguments for differentiation were proposed the evidence of specific markers: osteonectine, sialoproteines and osteocalcine. Osteoprogenitors cells culture were tested on various samples of scaffold. Cell cultures were tested for alkaline phosphatase at a week after culture. The technique uses p-nitrophenole which is going to be change by alkaline phosphatase in dinitro-phenole.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,387.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.