53
Views
5
CrossRef citations to date
0
Altmetric
Articles

Charge Transport in Porous Silicon/Graphene-Based Nanostructures

, , , &
Pages 32-38 | Published online: 19 Jun 2019
 

Abstract

In this study hybrid structures were created by deposition of the graphene oxide and the reduced graphene oxide on the porous silicon layer. The charge transport and relaxation processes in obtained structures were analyzed on the basis of comprehensive studies of conductivity and depolarization current in the 90–325 K temperature range within the model of disordered semiconductors. Hopping conductivity and activation mechanism of charge transport in different temperature ranges were established and the activation energy of the conductivity was determined. Localized electron states that affect the charge transport in the porous silicon/graphene-based structures were found by means of thermally stimulated depolarization spectroscopy. It has been revealed that the adsorption of water molecules changes resistive and capacitive parameters of hybrid structures. Found features of the charge transport processes expand the prospects of application of such nanomaterials for sensor electronics.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,387.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.