99
Views
1
CrossRef citations to date
0
Altmetric
Articles

New small molecule electrolytes based on tosylate anion for organic solar cells

&
Pages 47-52 | Published online: 22 Oct 2019
 

Abstract

Reduction of a Schottky barrier between the active layer and electrodes can play an important role enhancing the power conversion efficiency (PCE) of organic solar cells (OSCs), which originated from a favorable interface dipole at the cathode interface. Herein, two new small molecules (SM) electrolytes based on tosylate anions, named 2,2’-(ethane-1,2-diylbis(oxy))bis(N,N,N-trimethylethananminium) benzenesulfonate (TEG-M-OTs) and 1,1'-bis(1-dodecyl)-4,4′-bipyridine-1,1′-diium benzenesulfonate (V-C12-OTs), were synthesized to induce the reduction of a Schottky barrier in OSCs. The PCE of devices based on ZnO with TEG-M-OTs or V-C12-OTs as the cathode buffer layer (CBL) was enhanced from 7.48% to 7.74% and 7.88%. In case of ZnO-free devices, the PCE of TEG-M-OTs or V-C12-OTs was achieved up to 4.22% and 6.95%, respectively. The Kelvin probe microscopy was performed by measuring the work function (WF) of SM electrolytes with or without ZnO on the ITO surface. It showed that the WFs of SM electrolytes coated ITO are closer to - 4.02 eV, the lowest unoccupied molecular orbitals (LUMO) of the acceptor, than the WF of MeOH treated ITO with ZnO (- 4.37 eV).

Acknowledgment

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20194010201840) and was supported by the BB21+ Project in 2018.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,387.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.