812
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Gas-Particle Cyclonic Separation Dynamics: Modeling and Characterization

, , &
Pages 112-142 | Received 20 Oct 2017, Accepted 04 Sep 2018, Published online: 25 Oct 2018
 

Abstract

As a stationary intensification processing technology, cyclonic separation has been widely used for multiphase gas-particle separation in the fields of fluidized processing, energy utilization, material synthesis and aerosol classification. The mathematical characterization of gas-particle dynamics inside a cyclone separator is vital in implementing performance prediction, structural design, parameter optimization, and/or techno-economic assessment. In past decades, significant efforts have been made to develop modeling approaches to gas-particle separation processing and dynamics inside cyclone separators. However, these modeling approaches are derived from different fundamentals of theory and method. Hence, their applicability and effectiveness have not been comprehensively validated or verified, particularly for those cyclones with varied geometrical dimensions, operating conditions, and multiphase properties. In the current review paper, various types of modeling approaches from the 1940s to the present are summarized, compared, and evaluated for gas-particle cyclonic separation dynamics, focusing on the modeling of gas flow pattern, pressure drop, and gas-particle separation behaviors including the particle cut-size and grade efficiency. The modeling for dense medium cyclones was also involved. Finally, the future outlook is highlighted to advance the modeling of gas-particle separation dynamics in cyclone separators.

NOMENCLATURE

Greek symbols

Subscripts

Additional information

Funding

This work was supported by the Natural Science Foundation of Shanghai [No. 17ZR1419300].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 757.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.