220
Views
2
CrossRef citations to date
0
Altmetric
Review

Sedimentation Field-flow Fractionation in Thin Channels and Rotating Coiled Columns: From Analytical to Preparative Scale Separations

ORCID Icon, , , & ORCID Icon
Pages 363-379 | Received 16 Oct 2019, Accepted 09 Jun 2020, Published online: 13 Jul 2020
 

ABSTRACT

Theoretical background, instrumentation, and applications of “conventional” sedimentation field-flow fractionation in thin channels (SdFFF) and “non-conventional” sedimentation coiled-tube field-flow fractionation (CTFFF) in rotating columns are summarized and compared. Applications are classified into three main groups: environmental studies, material science, and biological studies.

SdFFF is a versatile separation and sizing method applicable to complex particulate matter such as environmental samples, engineered particles, cells, etc. However, the mass of injected particles does not usually exceed 10–20 µg to avoid overloading. CTFFF enables the mass of the particulate sample to be increased up to grams. Despite its low resolution as compared to SdFFF, CTFFF has important niche applications. It opens a new door into the isolation of nano- and submicron particles from bulk samples of different origin and nature. In addition, CTFFF is a very promising instrument for the separation and purification of nano- and microparticles at preparative and even industrial scale.

Abbreviations: A4F – Asymmetrical flow field-flow fractionation; CSF – Conventional SPLITT fractionation; CTFFF – Coiled-tube field-flow fractionation; CV-ETAAS – Cold vapor electrothermal atomic absorption spectroscopy; DLS – Dynamic light scattering; EDS – Energy dispersive X-ray spectroscopy; ES-SMPS – Electrospray-scanning mobility particle sizer; ETAAS – Electrothermal atomic absorption spectroscopy; FE – Fractionation efficiency; FFDSF – Full feed depletion SPLITT fractionation; FFF – Field-flow fractionation; ICP-AES – Inductively coupled plasma-atomic emission spectrometry; ICP-MS – Inductively coupled plasma-mass spectrometry; LD – Laser diffraction; MAD – Monoolein aqueous dispersions; MALS – Multi-angle light scattering; NLC – Nanostructured lipid carriers; NP – Nanoparticle; NTA – Nanoparticle tracking analysis; OM – Optical microscopy; PS – Polystyrene; PSD – Particle size distribution; RCC – Rotating coiled column; SdFFF – Sedimentation field-flow fractionation in thin channels; SEM – Scanning electron microscopy; SP-ICP-MS – Single-particle inductively coupled plasma-mass spectrometry; SPLITT – Split-flow thin-cell fractionation; TEM – Transmission electron microscopy; UV – Ultraviolet detector

Acknowledgments

The authors are grateful to the Embassy of France in Moscow for Vernadsky PhD fellowship awarded to A.I. Ivaneev.

Disclosure Statement

The authors declare that they have no competing interests.

Additional information

Funding

This work was supported by the Russian Science Foundation under project No 16-13-10417; Ministry of Science and Higher Education of the Russian Federation under program of increasing competitiveness of NUST “MISiS”, project No К2-2017-088. The research corresponds to the topic № 0116-2019-0010 of Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 757.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.