558
Views
38
CrossRef citations to date
0
Altmetric
Original Articles

A Study on the Thermal Performance and Emissions of a Variable Compression Ratio Diesel Engine Fuelled with Karanja Biodiesel and the Optimization of Parameters Based on Experimental Data

&
Pages 841-863 | Published online: 21 Nov 2012
 

Abstract

Fossil fuels are the chief contributors to urban air pollution and major source of green house gases and are considered to be the prime cause behind the global climate change. Biofuels are renewable, can supplement fossil fuels, reduce green house gases, and mitigate their adverse effects on the climate resulting from global warming. In the present study, biodiesel produced from karanja oil is evaluated as alternative fuel in a diesel engine. The experiments are conducted on a single-cylinder, four-stroke, direct-injection CI engine and the experimental parameters include the percentage of karanja biodiesel in the blend, engine load, injection pressure, and compression ratio. Comparative measures of brake thermal efficiency, brake-specific fuel consumption, smoke opacity, and HC, CO, and NOX emissions are presented and discussed. Results show that the performance of the engine fuelled with karanja biodiesel and its blends with diesel fuel is generally comparable to that when the engine is fuelled with pure diesel. At higher compression ratios, the engine gives lesser emission and better performance. Genetic algorithm optimization technique was used to optimize the parameters. With respect to maximum efficiency and minimum emissions, the optimum values of load, compression ratio, injection pressure, and blend were 6 kg, 18, 247 bar, and B95, respectively.

ACKNOWLEDGMENTS

The authors are thankful to GIT Belgaum, for providing the computer-interfaced VCR engine test rig for experimentation. Authors express their sincere gratitude to Shri. M. S. Patil, Apex Innovation Ltd., Sangli, Maharashtra, India, for his constant guidance and support. Thanks are also due to VTU Belgaum, for the research grants provided to buy the emission measuring apparatus.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 405.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.