183
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

A Novel Composite Membrane from QPSU and SiO2 for Solid Alkaline Fuel Cell Applications

&
Pages 756-765 | Published online: 06 Mar 2015
 

Abstract

The goal of this work is to develop a novel composite membrane from quaternized polysulfone (QPSU) and silica (SiO2), to fabricate alkaline membrane electrode assemblies (MEAs) and to subsequently test the MEAs in 5 cm × 5 cm single cell configuration using Pt/C and Ag/C as anode and cathode catalysts, respectively. The composite membranes were characterized in terms of water absorption, ion exchange capacity and ionic conductivity. The physicochemical studies Fourier transform infra red (FT-IR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) studies, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and universal testing machine (UTM) were used to investigate the relation between the structure and performance of the composite membranes. The results show that the SiO2 was compatible with the QPSU membrane. The thermal stability and ionic conductivity of the QPSU/SiO2 composite membranes were higher than that of quaternized polysulfone (QPSU) membrane. The maximum performance was achieved for 10 wt.% SiO2 with power density of 149.6 mW/cm2 at current density of 440 mA/cm2.

Additional information

Funding

Financial support from the Department of Science and Technology (DST), New Delhi, India (Letter No. SR/S2/CMP-06/2008, dated 21-08-2008) is gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 405.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.